Iron biofortified cereals to reduce hidden hunger in Africa

Alex Johnson, School of BioSciences, The University of Melbourne
Hidden hunger affects one in three people globally

Iron deficiency = more than 2 billion
Zinc deficiency = 2 billion
Vitamin A deficiency = 150 million

Source: WHO Global Health Observatory Database: http://apps.who.int/ghodata/
Cereals are a poor source of micronutrients, particularly iron, in the human diet

- Low amount of iron (Fe) cereal grain, mostly in the outer bran and germ layers which are removed by milling.
- Typically bound to phytate and not bioavailable.
LETTER

Increasing CO2 threatens human nutrition

Samuel S. Myers1,2, Antonella Zanobetti3, Itai Kloog3, Peter Huybers4, Andrew D. B. Leakey5, Arnold J. Bloom6, Eli Carlisle6, Lee H. Dietterich7, Glenn Fitzgerald8, Toshihiro Hasegawa9, N. Michele Holbrook10, Randall L. Nelson11, Michael J. Ottman12, Victor Raboy13, Hidemitsu Sakai9, Karla A. Sartor14, Joel Schwartz1, Saman Seneeweera15, Michael Tausz16 & Yasuhiro Usui9

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies1, causing a loss of 63 million life-years annually2,3. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.

experiments contribute more than tenfold more data regarding both the zinc and iron content of the edible portions of crops grown under FACE conditions than is currently available in the literature. Consistent with earlier meta-analyses of other aspects of plant function under FACE conditions14,15, we considered the response comparisons observed from different species, cultivars and stress treatments and from different years to be independent. The natural logarithm of the mean response ratio (r = response in elevated [CO2]/response in ambient [CO2]) was used as the metric for all analyses. Meta-analysis was used to estimate the overall effect of elevated [CO2] on the concentration of each nutrient in a particular crop and to determine the significance of this effect (see Methods).

We found that elevated [CO2] was associated with significant decreases in the concentrations of zinc and iron in all C3 grasses and le-
Biofortification – a sustainable alternative to supplements and food fortification

Conventional Rice

Golden Rice

✓ Fortifying plants with biology
✓ One time investment
✓ Reaches rural populations
Conventional breeding has failed to biofortify the major cereals with Fe

Biotechnology offers new possibilities to reach Fe biofortification targets
With a single gene we can genetically engineer rice to be more effective at mining soil for Fe.

Seedlings growing in UC Davis soil mix, pH 8.5

(Johnson 2013: *Functional Plant Biology* 40, 101-108)
The rice plants produce Fe biofortified grain

Green color indicates four-fold more Fe

(Johnson et al. 2011: *PLoS ONE* 6, e24476)
(Kyriacou et al. 2014: *Journal of Cereal Science* 59, 173-180)
With the same genetic engineering approach we can produce Fe biofortified wheat.

Conventional Fe Biofortified Wheat

Green color indicates two-fold more Fe
Commercialization of Fe biofortified rice in Bangladesh within the next 5 years

- 80% of cultivated land area is used to grow rice.
- In 2013 became the first country to commercialize genetically engineered Bt brinjal (eggplant).
- Currently field testing genetically engineered potato, cotton and rice.
- Could be an important “starter” country for Fe biofortified rice (and possibly wheat) to launch to rest of Asia.
- How to get into Africa? Rice in West and Central Africa; wheat in North Africa.
Rechanneling attitudes towards agricultural biotechnology for better nutrition

- Conventional breeding can deliver a range of biofortified crops (provitamin A cassava, Fe biofortified pearl millet and beans, etc.) but it misses many key areas.

- Agricultural biotechnology can address those areas and produce crops with huge impact – Fe biofortified rice and wheat, Golden Rice.

- Costs of discovery, development and authorization (deregulation) of a genetically engineered crop can exceed $100 million!

- By supporting commercialization of genetically engineered crops in developing countries (e.g. public-private partnerships) developed countries like Australia can help realize the benefits of biofortified crops in Africa and other regions impacted by hidden hunger.
Acknowledgements

- Julien Bonneau & Jesse Beasley
- Joe Tohme, Gerard Barry, Inez Slamet-Loedin
- Enzo Lombi, Damien Callahan, Laura Moreno
- Bianca Kyriacou, James Stangoulis, Mark Tester, Lorraine Carruthers

School of BioSciences

Australian Government
Australian Research Council

HarvestPlus
Breeding Crops for Better Nutrition

World Vision

Linkage project LP0883746
Linkage project LP130100785