Finding the best 'ways' with fish passes around dams. Lower Mekong River Basin

Mekong Basin

Upper Catchment (Lancang River)

- China
- Myanmar

Lower Catchment (Mekong River)

- Laos
- Thailand
- Cambodia
- Vietnam

Importance of Mekong

- Diversity (480+ species and 40 families of fish)
- Endemic species
- Commercial value
- 2.2 million tonnes per annum for consumption
- 2% of worlds commercial fish catch
- Lao PDR 48% animal protein from fish
- Cambodia 79% animal protein from fish

Total number of FW Fish species

4 different agro-ecological zones

Why does fish movement matter?

- Complete life cycle
- Reproduction
- Maintain genetic diversity
- Maintain population
- Migration

Floodplain wetlands are rich in habitat and food and are important breeding and feeding sites for fish

Unproductive
Wetlands
~0.6 Million tonne

Productive
Wetlands
~2.3 Million tonne

Problem?

- Thousands of migration barriers
 throughout the Lower Mekong Basin hindering fish passage
- 70% of Mekong fisheries are endangered

Map Of Mekong Damspes of Barriers

Agricultur al Research (CGIAR) and has worked in the Mekong since 2004.

Types of Barriers

Regulators

• Regulators restrict fish access to most of the 200,000 km² of

wetland in the Lower Mekong Basin

(Marsden et al. 2014)

Solution? Engineered structures

Design accounts for:

- 1. Ecological objectives
- 2. Hydrology of site (flow characteristics)
- 3. Swimming ability of local fish (fast, slow, strong, weak)
- 4. Design should be appropriate for the site (many to pick from, not all will be suitable)

Design Challenge 1– Target Species

- Large animals
- Endemic species
- Many different sizes and swimming abilities
- Difficult to design fish passes function for all

Design Challenges 2: Hydrology

Wet season

Dry season

Design Challenge 3: Swimming ability

Challenges in form design

- 1. Rock ram fishway
- 2. Vertical slot fishway
- 3. Cone fishway

Case Study Pak Peung Wetland Research Site

Pak Peung regulator

Pak Peung Fishway

Data collecting

Pak Peung fishway monitoring results

Preliminary results – late wet season

- 13,872 fish
- 102 species
- 23 days over a month

Pilot experiments in Australia and Lao PDR show that more fish are injured or killed by undershot weirs than overshot weirs

Upgrade existing gates and compare injury mortality rates

Conclusion

- Lower Mekong Basin significant for fish
- Many barriers to fish movement
- Engineered solutions:
 different solutions for different challenges
- Monitoring important to ensure solutions are effective
- Pak Peung Wetland study site case study important to demonstrate problems and solutions

Thank you for your time

