

WHAT CAN FARMERS DO?

Lucinda Corrigan Founding Chair Farmers for Climate Action & Director Rennylea Pastoral Company

Beginnings

Our Networks of Change

Our board has over 200 years of combined experience in agriculture. They are industry leaders from across the country.

Our advisors are Australia's leading climate & agricultural researchers.

Our staff have expertise in politics, advocacy, regional development, research agriculture, media and marketing.

Our collaborators are some of the leading bodies in agriculture, conservation & rural Australia.

OUR STRATEGY

FCA has galvanised farmers and the Ag sector as a credible voice for climate action.

BONERIY 2005 OY 15 EVERSOL TARETRIKA PERKETEKATERA FUNDA BARAN BARAN KANERIK BARAN BARAN KANERIK BARAN BARAN B

FOCUS AREA 1

Agriculture is Climate Smart

FOCUS AREA 2

Farmers
Mobilised to
Drive a Clean
Energy
Transition

FOCUS AREA 3

Rural &
Regional MPs
Championing
Climate Action
& Renewable
Energy

FOCUS AREA 4

Agriculture
Leaders
Championing
Climate Action

Industry Targets are moving quickly

The Headline is the National Farmers Target CN2050

Red Meat – CN2030 (2017)

Dairy – 30% reduction by 2030

Pork – CN2025 to be announced by end FY21

Grains – consulting on a 2030 target, support NFF CN2050

Wine Industry – committed to a CN2050 vision

Horticulture – finalizing Draft Sustainability Framework

Sheep Meat & Wool – Launching their Sustainability Framework 21.4.21

& more......

The rainfall-temperature operating envelope

Rainfall-temperature operating envelopes

A changed operating environment

BoM data

Climate changes dragging back farm profits

Farm business profit percentile ranges

90-100 Near highest

80-90 Very much above average

70-80 Above average

30-70 Average

20-30 Below average

10-20 Very much below average

0-10 Near lowest

Insufficient sample

Non-agricultural land

Climate changes (post 2000) affecting farm profits from -37% (Vic.) to +8.7% (NT)

Potential Wheat production is down

- Potential yields have declined by 27% since 1990, from 4.4 tonnes per hectare to 3.2 tonnes per hectare.
- Rainfall declines accounted for 83% of the decline in yield potential
- Temperature increases are responsible for 17% of the decline.

Potential Wheat production is down

Why then have actual yields remained steady when yield potential has declined by 27%?

ADAPTATION

- Wheat farmers are closing the yield gap. From harvesting 38% of potential yields in 1990 this increased to 55% by 2015.
- Averaged out over a number of seasons, Australia's most productive farmers achieve about 80% of their yield potential.
- As climate change accelerates enhanced levels of adaptation will be required in order to increase the proportion of potential yield farmers can realise.

Greenhouse gas emissions from beef production expressed as kg of CO₂ equivalents per kilogram of protein

Source: Herrero et al., 2013 PNAS 110: 20888-20893

Van Eenennaam 2/25/2021

Growth by region in cattle numbers, 1961-2018

Figure 10. Relationship between the methane mitigation potential in individual animals and likely time to first implementation on farm after considering additional research needed for a range of methane mitigation practices. The size of the bubble-dot represents a relative estimate of the likely cost and risk of further research required.

Our Work At Rennylea

Genetics and Genomics – Accurate description

100 RENNYLEA Q1027[™] (APR)(AI)

Born: 09/08/2019 Age: 12 MTH Society Ident.: NORQ1027

USA17386506 HPCA INTENSITY Sire: NORL467 RENNYLEA L467 NORH414 RENNYLEA H414

NORH708 RENNYLEAH708 Dam: NORM1057 RENNYLEA M1057 NORJ927 RENNYLEA J927

1				Structur	al Scores	5		
	A	4	"4	No	W	$\langle 1 \rangle$	SHEATH	FMP.
	6	6	6	5	5	32	4	2

	-	ė.	June 2020 ANGUS GROUP BREEDPLAN EBVS																	
760	1		Calving	Ease			Grow	th & Ma	itemal		Fer	tility	CWT		400	Kg Care	case		Temp	
8	20	Dir	Dtrs	GL	B Wt	200	400	600	M Wt	Milk	88	DC	750d	EMA	RIb	Rump	RBY	IMF	Dodl	
EB	v	+5.4	+1.9	-4.4	+2.9	+51	+97	+131	+103	+22	+1.0	-4.8	+74	+7.2	+0.1	-0.1	-1.8	+5.7	+2	
Acc	à.	55%	49%	85%	74%	68%	67%	68%	66%	58%	63%	42%	62%	60%	64%	61%	62%	60%	57%	

Traits Observed: GL.BWT,200WT,DOC,Genomics

NOTES: Highest IMF buil in the sale at 5.7. L467 out of a H708 female. You can't access meat quality genetics like this anywhere else. Top 1% IMF, Angus Breeding, Heavy Grain Indicies. Top 5% Heavy Grass Index. Top 10% Domestic Index.

Commercial British Heifer Target Growth Rate and End Weight

Dung Beetle Research Site

Solar Electricity to mitigate emissions

Rennylea Emissions profile

														Summary on-	
Farm Name	Rennylea Pasto	oral Company										Outputs	t CO2e/farm	farm emissions	t CO2e/farm
State/Region	Vic											CO ₂ - Energy	146.39	CO ₂	300
Herd Information	Rulle >1	Steers <1 S	Steers 12	Steers >7	Cows >2 H	eifers<1 H		Heifers >2 (notstocalving)	eer/heifer/ste	er/heifer/stee	er/heifer/ cowUnits	CO ₂ - Transport	93.76	CH₄	5,508
	_							<i>ـــر</i> ه				11 -		,	
Livestock Numbers	35 819	714 260	363 576	38 0	1360 583	628 199	456 425	50 690	0	0	0head 0	CO ₂ - Lime	10.69	N ₂ O	895
Liveweight	0.70	1.20	0.70	0.18	0.20	0.89	0.40	0.00	0.00	0.00	kg/head 0.00	CO ₂ - Urea	49.13	embedded emissions	172
Live weight gain	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	kg/day 16.5	CH ₄ - Energy	0.23		
Crude Protein	10.3	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.3	10.5	%	Embedded emissions - urea	55.6		
Dry matter digestibility	67.8	67.8	67.8	67.8	67.8	67.8	67.8	67.8	67.8	67.8	67.8%	Embedded emissions - purch. feed	116		
	Dryland	Irrigated										CH ₄ - Enteric	5,506.03		
												CH ₄ - Manure Management	1.20		
Nitrogen Fertiliser Pasture	30.82	0									t N/ year	CH ₄ - Savannah Burning	0.00		
Nitrogen Fertiliser Crops	0	0									t N/ year	CH ₄ - Transport	0.27		
Nitrogen Fertiliser (other)	7.6	0										N ₂ O - Fertiliser	35.98		
Annual Diesel Consumption	50477										litres/year	N ₂ O - Urine and Dung	489.33		
Annual Petrol Consumption	6000										litres/year	N ₂ O - Atmospheric Deposition	52.53		
Annual Electricity Use	900										KWh	N ₂ O - Leaching and Runoff	315.73		
Transport	25000										km	N ₂ O - Savannah Burning	0.00		
Area of Trees Planted after 1990	150											N ₂ O - Energy	0.42		
Type of Trees planted	Hardwood											N ₂ O - Transport	0.68		
Rainfall	Med (500 - 700))										Tree Plantings (after 1990)	-4152.09		
Power Source	State Grid											Net Farm Emissions	2,721.90		

Citation: Beta version revised 2020 by Stephen Wiedemann (Integrity Ag and Environment) for MLA

Doran-Browne N.A. and Eckard R.J. (2018). A **G**reenhouse **A**ccounting **F**ramework for **B**eef properties (B-GAF) based on the Australian National Greenhouse Gas Inventory methodology. Updated May 2018 http://www.greenhouse.unimelb.edu.au/Tools.htm

Emission intensity owner-bred cattle (kg	
CO ₃ -e / kg LW) - excl. sequestration	8.3
Emission intensity owner-bred cattle (kg	3.
CO2-e / kg LW) - inc. sequestration	5

What's next? The Resilient Cow in a Changing Climate

Digital and disruptive, eg.

Auctions Plus

Supply chain value creation

Genomics – new traits

Efficiency using sensors to gather

Pasture quantity & quality

Feed additives to mitigate CH4

New legumes

The Goal – A Sustainable Food System

Thank you!

