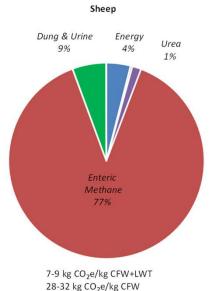
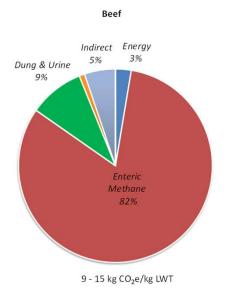
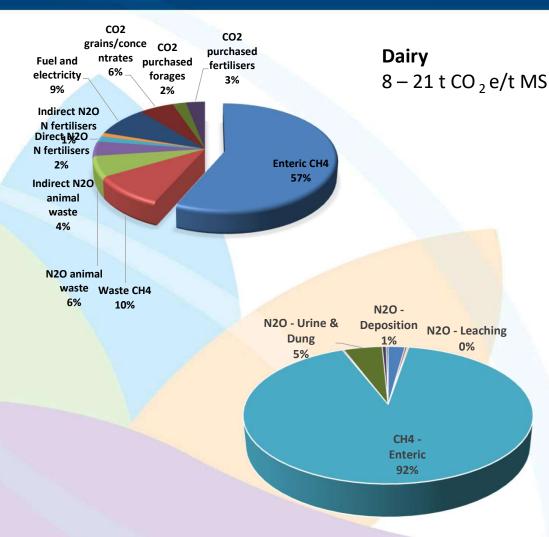
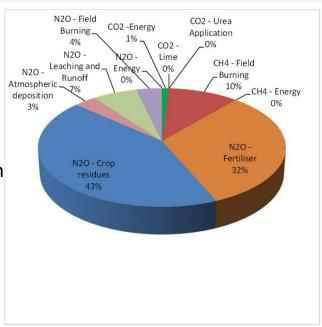
Scientific challenges facing agricultural greenhouse gas mitigation in livestock systems


Richard Eckard



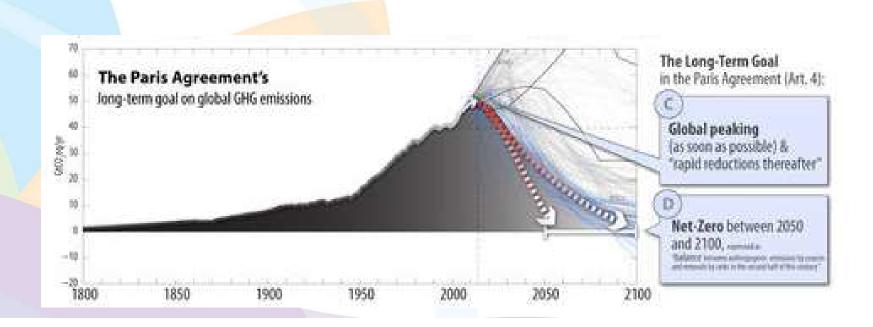
Agricultural emissions


- Methane
 - Ruminants, waste management
 - GWP₂₀ = 84
- Nitrous Oxide
 - Fertilizer, excreta, waste, legumes etc.
 - GWP₁₀₀ = 265
- Carbon Dioxide
 - Energy, lime, urea application and fertilizer production
- Sequestration
 - Soil and trees



Typical Farm GHG profiles

Grains / pulses 0.04 t/CO₂e/t grain


Rangeland Beef 14 t CO₂e/t LWT

The Paris Agreement and Drivers for Carbon Neutral Agriculture

Drivers of Carbon Neutrality COP21 Paris Agreement

- Net zero emissions from 2050
 - Any remaining GHG emissions need to be offset
 - Business and governments are aiming to comply

Drivers of Carbon Neutrality Supply chain responses to Paris Agreement

- Unilever
 - 50% by 2030, compared to baseline of 2010
- Fonterra
 - Climate-neutral growth to 2030
- Mondelez
 - Reduce absolute GHG from manufacturing 15%
 - 100% renewable energy
- Nestle
 - Zero environmental impact in our operations
- Heineken
 - Carbon neutral barley-malt supply chain

- Mars
 - 27% by 2025 and 67% by 2050 (from 2015 levels)
- Kellogg Company
 - 65% reduction by 2050
 - 100% renewable energy
- Pfizer
 - 60 to 80% by 2050
- Wilmar international
 - ~90% less GHG from 2013 to 2020
 - 100% renewable energy
- Olam
 - 50% by 2030 and positive by 2050

Of the 100 largest economies 69 are companies and 31 are countries

Drivers of Carbon Neutrality Livestock Industry Responses

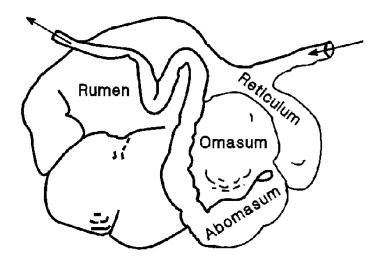
- Meat and Livestock Australia
 - Carbon neutral red meat by 2030 (CN30)
- Mato Grosso do Sul, Brazil
 - MS carbon neutral initiative
 - 43% by 2030, zero by 2050
 - Carbon neutral Brazilian Beef
- New Zealand
 - Climate Change Response Amendment Act 2019
 - 30% by 2030, net zero by 2050
 - Includes agriculture

Scientific challenges

doi:10.1017/S1751731119003100

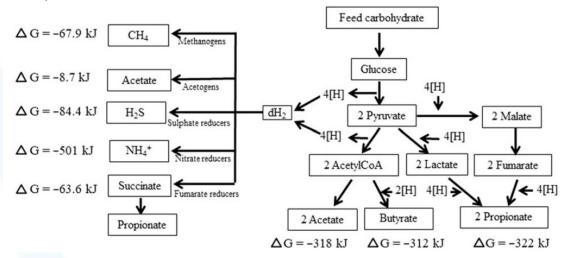
Key reference

Animal (2020), 14:S1, pp s2–s16 © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada 2020


Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation

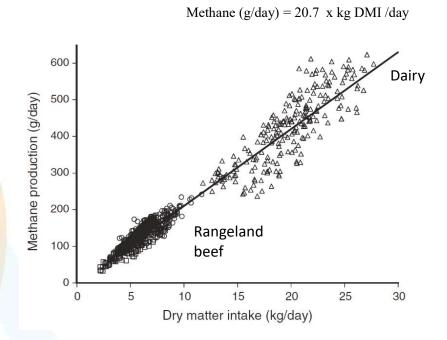
K. A. Beauchemin^{1†} o, E. M. Ungerfeld², R. J. Eckard³ and M. Wang⁴

Rumen digestion


- Ruminants evolved 4 stomachs about 50M years ago
 - We aim to change this in 30 years
 - Adaptation to mitigants is a challenge
- Rumen = Microbial fermentation
 - 40-60% bacteria & protozoa
 - 10¹¹ & 10⁶ cells/ml over 200 species
 - 5-10% fungi
 - 10⁶ zoospores/ml
 - 3% Archaea (methanogens)
 - 10⁸ cells/ml

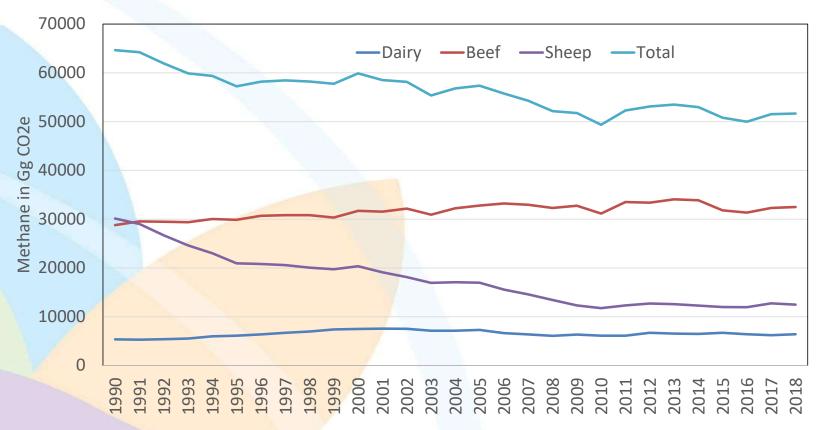
Methanogenesis

- A form of anaerobic respiration
 - Using the H₂ and CO₂ from VFA formation
 - $4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$
- Most energetically efficient process
 - -To dispose of metabolic H₂ and CO₂ as CH₄
- Not essential for digestion
 - Block or redirect energy

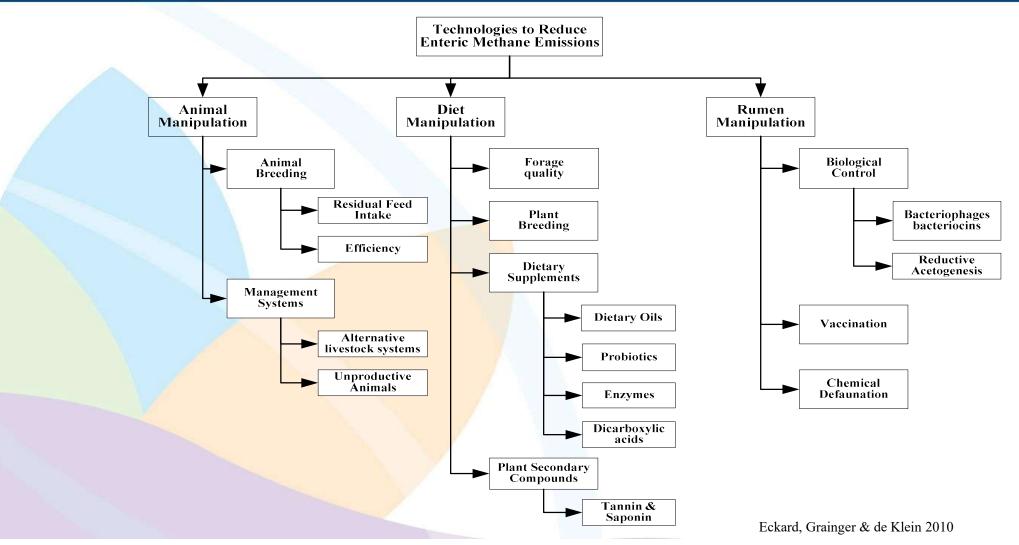


Beauchemin, Ungerfeld, Eckard and Wang (2020)

Factors affecting enteric methane loss


- Rumen passage rate /forage quality
 - More/less time producing methane
 - More propionate
- Rumen pH
 - More acid less CH₄
- Secondary compounds
 - Tannins, saponins, oils
- Direct inhibitors
- Vaccines

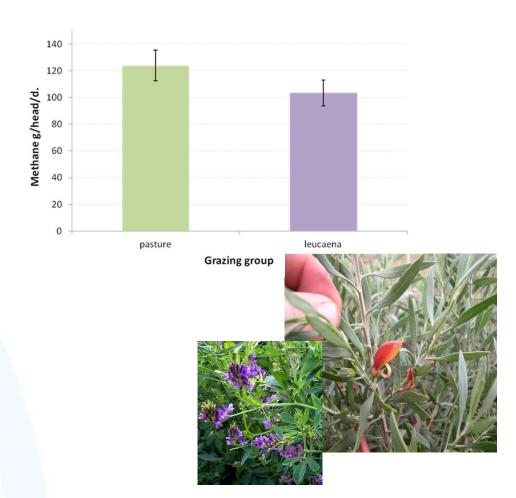
Trends in absolute methane – Australia



Options for reducing methane in animal production

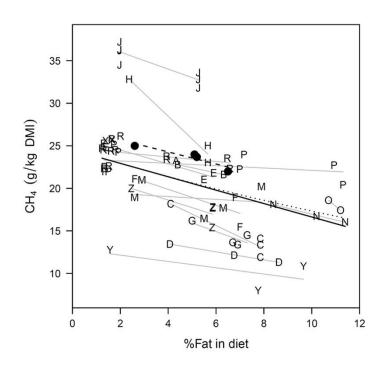
Methane mitigation options

Options for reducing enteric methane Animal Productivity


- Reducing unproductive animal numbers
 - Earlier finishing, reproduction, fertility, weaning %
 - Improve animal health
 - Larger potential in LMICs
 - Reduces g CH₄/kg product
- Animal Breeding
 - Reduced methanogenesis
 - Low heritability and slow gains (<1% /year)
 - Could be breeding for rumen passage rate?
 - Feed Conversion Efficiency
 - Moderate heritability
 - Reduces g CH₄/kg product

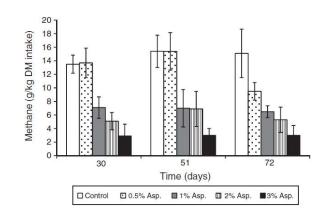
Options for reducing enteric methane Nutrition

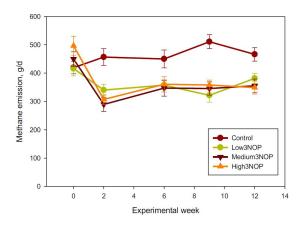
- Forage digestibility
 - e.g. better pastures & grazing management
 - More propionate less CH₄
- Forage properties
 - Legumes (~10%)
 - Leucaena, Lucerne, Vetch, Lotus
 - Native Shrubs
 - Eremophila



Options for reducing enteric methane Nutrition

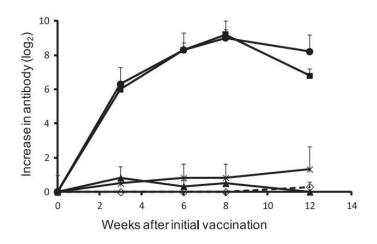
- Oils (~20%)
 - 1% added fat = 3.5% less CH₄
- Tannins (10-15%)
 - Forage legumes
 - Extensive grazing and LMIC
- Tannin + Oil
 - Grape marc (~20%)
 - Oil + tannin

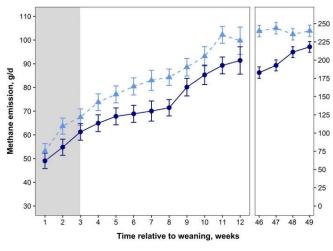




Options for reducing enteric methane Rumen

- Methane inhibitors
 - Asparagopsis / Seaweed (>80% or 5.3 g CH₄/kg DMI)
 - Co-enzyme inhibitor
 - Bromoform & iodine?
 - 3-nitrooxypropanol (3-NOP) (~70%)
 - Co-enzyme inhibitor
 - EU registration 2021
- Limited in extensive grazing
 - Inhibitor efficacy related to supply
 - Need slow release technology
- Limited in LMICs
 - Cost!





Options for reducing enteric methane Rumen

- Vaccine (20%?)
 - Antibodies in saliva
 - Suited to more extensive grazing
 - Potential solution for LMICs
- Early life programming
 - Programming the rumen early in the animal's life
 - Early evidence, persistence?
 - Most suited to extensive grazing and LMICs

Wedlock et al. (2013); Yánez-Ruiz et al. (2015); Eckard and Clark (2018); Meale et al. (2021)

Challenges facing mitigation in livestock systems

- Research has moved
 - 20% to 80% CH₄ mitigation options
- Current opportunities
 - Animal Management
 - Nutrition
 - Inhibitors
- Challenges
 - Options for extensive grazing and LMICs
- Future opportunity
 - Early life programming

www.PICCC.org.au

