

Strategies and incentives for carbon sequestration in cropping and pastoral systems

Terry McCosker

Resource Consulting Services 1800 356 004 www.rcsaustralia.com.au

Agriculture flounders and mines its resources because consumers will not pay the full price of food

CARBON or ENVIRONMENTAL credits provide a mechanism to return additional income to landholders

The Linkages

- Profit = (f) Gross Margin
- Gross Margin = (f) Plant Productivity
- Plant productivity = (f) plant available water and nutrients
 - Plant available water and nutrients = (f) CeC
 - CeC = (f) Soil organic carbon (incl Humus)
 - Soil organic carbon = (f) biological activity
 - Biological activity = (f) food, shelter, water & air
 - Food, shelter, water & air = (f) plant productivity
- Plant productivity = (f) plant available water and nutrients

Spiral up

6 PRINCIPLES of SOIL HEALTH

- 1. PLAN, MONITOR & MANAGE SOIL HEALTH
 - 2. MAXIMIZE LIVING PLANT PRODUCTION
- 3. A FOCUS on BIOLOGY will REPAIR SOIL HEALTH
 - 4. INTRODUCE BIODIVERSITY
 - 5. MAXIMUM THICKNESS and AVAILABILITY of GROUND COVER
 - 6. LIVESTOCK are NATURE's RECYCLERS

Planning

HARMS BIOLOGY	<u>ALTERANTIVES</u>
 Salt based Phosphorus (MAP, DAP, SSP) 	Guano, Soft Rock Phosphate
• Urea	 Mix with Carbon and reduce rates
Glyphosate	Alternate weedicides
Fungicide Seed coats	• Trichoderma
Neonicotinoid insecticides	• Brix level > 14 = no insects
• Fungicides	• Brix level > 14 = no disease
• Tillage	Minimum or Zero Till

Ways to increase soil health

Biodiversity

CATALYTIC INPUTS

BIOLOGY

MANAGEMENT

(eg grazing/cover cropping)

Tools available

Management

- Grazing System
- Cover/Green manure Crops
- Crop rotations
- Continuous cropping
- Aeration
- Landscape Hydration
- + Biology
- Compost & Compost Extract (BEAM)
- + Fertilizer & Catalysts
- + Biodiversity

Sequestration Rates

Table 3: displays the adjusted mean sequestration rates for regenerative and conventional cropping practices with standard error in parenthesis, Upper confidence intervals and lower 95% BCa confidence intervals (controlling for soil depth (cm) and rainfall (mm)).

Cropping	Mean annual	CI Lower	CI Upper	
	Carbon Sequestration rate t/C/ha			
Regenerative	1.44 (0.14)	1.06	1.84	
Conventional	onventional -0.17 (0.29)		0.34	
Grazing				
Regenerative	0.93 (.14)	0.64	1.24	
Conventional	-0.07 (.10)	-0.27	0.11	

Regenerative GRAZING practices reported an average sequestration rate of 1.03t (v -0.07t) C/ha/year, but can range up to 3.8 tC/ha/year

Average expected annual soil carbon sequestration when implementing regenerative CROPPING activities are 1.46t (v -0.16t) C/ha/year, but can range up to 4.8 tC/ha/year

SOURCE: Carbon Link Internal Review

Sequestration Rates

	GRAZ	ZING	CROP	PING
Sequest Rate adjusting	Sequest. Rate	Sequest. Rate	Sequest. Rate	Sequest. Rate
for Rainfall and	t/C/ha/year	t/C/ha/year	t/C/ha/year	t/C/ha/year
Enterprise	Regenerative	Conventional	Regenerative	Conventional
Average	1.03	-0.07	1.46	-0.16
Min	-0.07	-0.52	-0.16	-4.40
Max	3.80	0.24	4.79	2.20
High rainfall >800mm				
average	1.17	-0.18	2.45	0.40
Min	-0.07	-0.22	0.05	0.00
Max	3.00	-0.13	4.79	1.15
Mid rainfall 500-800mm				
average	1.17	-0.08	1.59	-0.32
Min	-0.07	-0.52	-0.08	-4.40
Max	3.80	0.24	4.79	1.15
Low rainfall <500mm				
average	0.56	0.02 *	0.47	-0.18
Min	0.18	0.02 *	-0.16	-0.33
Max	1.60	0.02 *	2.00	0.00

SOURCE: Carbon Link Literature Review

4 Key Drivers of Return

1. Sequestration rate (tC/ha/year)

Projected outcomes at different sequestration rates						
Sequestration rate (tC/ha/yr)	1.00	1.5	2			
Projected net abatement (tCO2e)*	56400	84550	112750			
Total cashflow over 25 years	\$1,660,900	\$2,608,000	\$3,555,100			
Annualised cashflow per hectare	\$33	\$52	\$71			
Net present value (25 years)	\$1,042,000	\$1,654,950	\$2,267,850			
NPV discount rate	3.00%	3.00%	3.00%			
Projected internal rate of return	39%	51%	60%			

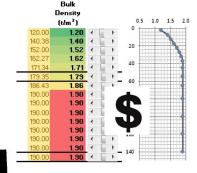
^{*}Includes the mandatory risk of reversal and 25yr permanence discounts, as well as Carbon Link's commission on ACCUs (18%). Based on 2,000ha and a 25 year carbon price of A\$34/t CO2e, with a cost base of A\$6/ha/annum.

SOURCE: Carbon Link Limited Insights Calculator

4 Key Drivers of Return

1. Sequestration rate (tC/ha/year)

2. Price of carbon (\$/T CO2e)


3. Cost of

measurement (\$/ha)

4. Scale of project (ha)

Benefits of increasing Soil Carbon

- Improved soil health
- Increased carrying capacity & yield
- Increased water holding capacity
- Enterprise risk hedge
- Management of price and drought risk
- Increased ecosystem resilience
- Lower costs

IRR @ \$34/t CO2e x varying scale and rate.

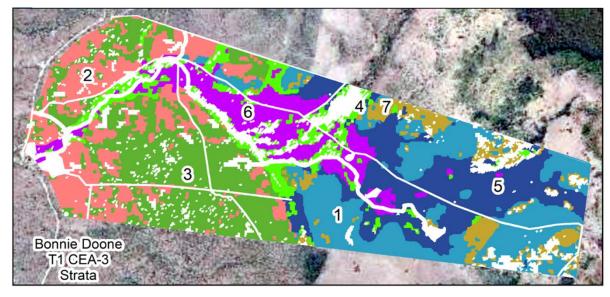
Scale	Seq Rate	Initial	IRR	Nett
(ha)	(t/ha/yr)	Investment	(%)	Cashflow
500	1	\$60,000	22	\$346,100
	2	\$60,000	38	\$819,650
	3	\$60,000	50	\$1,293,200
2000	1	\$105,000	39	\$1,660,900
	2	\$105,000	60	\$3,555,100
	3	\$105,000	74	\$5,449,300
4000	1	\$173,000	43	\$3,388,400
	2	\$173,000	65	\$7,176,800
	3	\$173,000	80	\$10,965,200

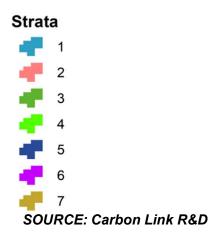
Notes: Costs include two measurements & Audit. No capital included.

Notes: Income based on \$34/t CO2e and current methodology.

SOURCE: Carbon Link Limited Insights Calculator

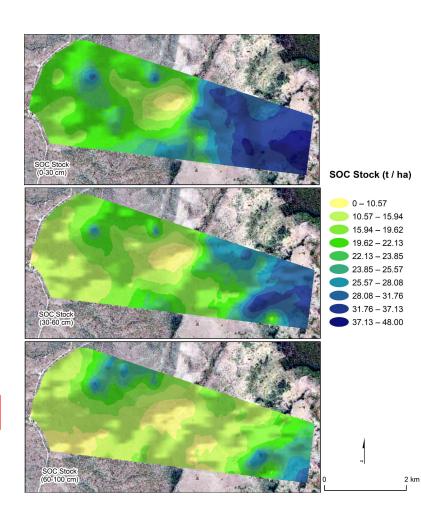
Stratification on 1,167ha


2016 -12 strata


In 2016 the standard deviation of Topsoil Stock was ~12.5 tC/ha at this site, and ~10 tC/ha for all projects.

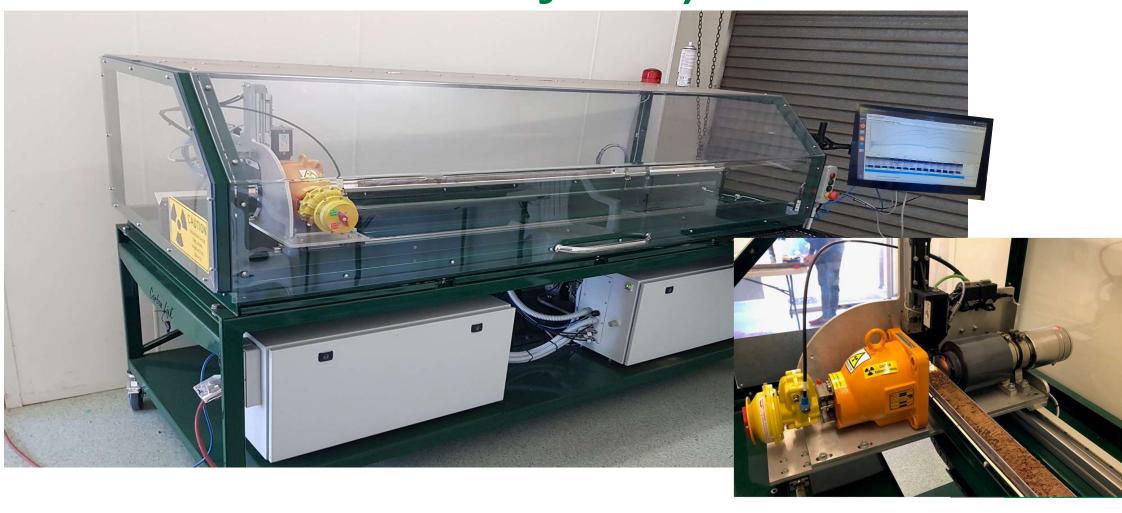
In our modelling a standard deviation under 5 tC/ha tends to detect creditable change after 5 years.

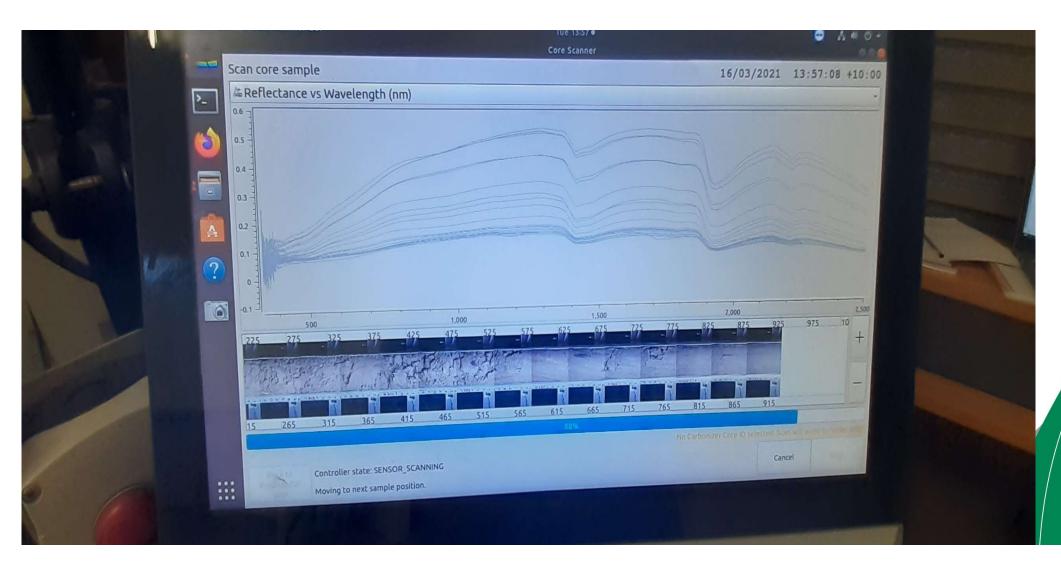
2020 – 7 strata


The 2020 results have reduced the CEA standard deviation to 1.07 tC/ha (range 0.98 to 4.00).

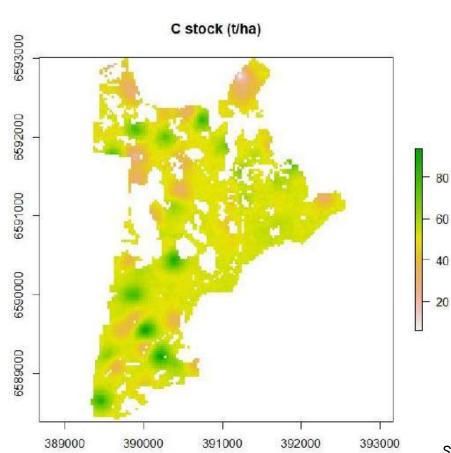
Stratification – Bonnie Doone

Strata	Area (ha)	Topsoil Stock (tC/ha)	Variance (tC/ha)	Standard Deviation (tC/ha)
1	237	44	9.26	3.04
2	189	29	0.96	0.98
3	278	31	1.33	1.15
4	78	35	16.03	4.00
5	205	51	15.18	3.90
6	115	38	7.34	2.71
7	65	52	12.80	3.58
CEA	1167	39	1.13	1.07


Soil Sampling



SCANS Unit – (Soil Condition Analysis System)


NIR spectra and core photograph

Change over 3 years with two years of drought.

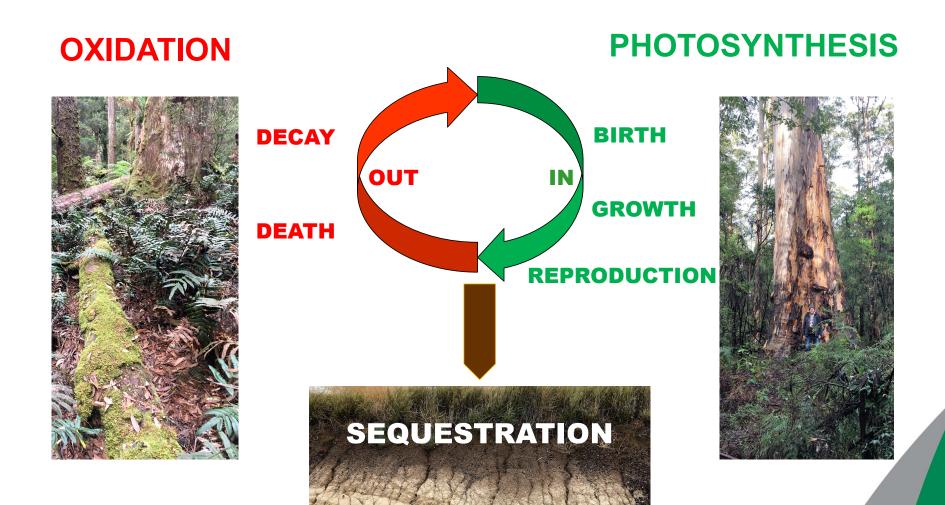
ESTIMATED DISTRIBUTION of TOTAL SOIL ORGANIC CARBON STOCK (0-30cm)

	Creditable Change							
Std Dev of Change			Stock	Total Stock	Creditable Change			
tC/ha	%	%	tC/ha	tC	tCO2-e			
9.02	3.35%	25.20%	-14.54	-614	-2,251			
5.88	22.15%	18.79%	5.32	1,077	3,949			
3.92	19.66%	5.10%	4.51	387	1,419			
7.34	2.34%	15.92%	-2.86	-271	-994			
4.39	14.65%	16.28%	2.54	399	1,462			
5.66	15.17%	16.09%	1.68	978	3,586			

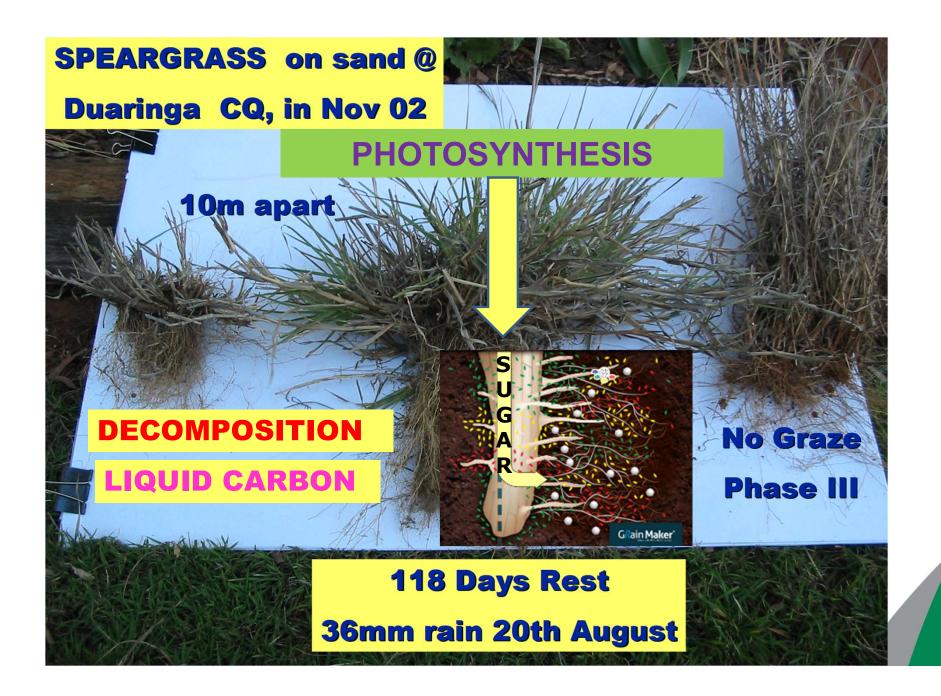
SOURCE: Carbon Link R&D

Net Abatement (after discounts) = 1,150t

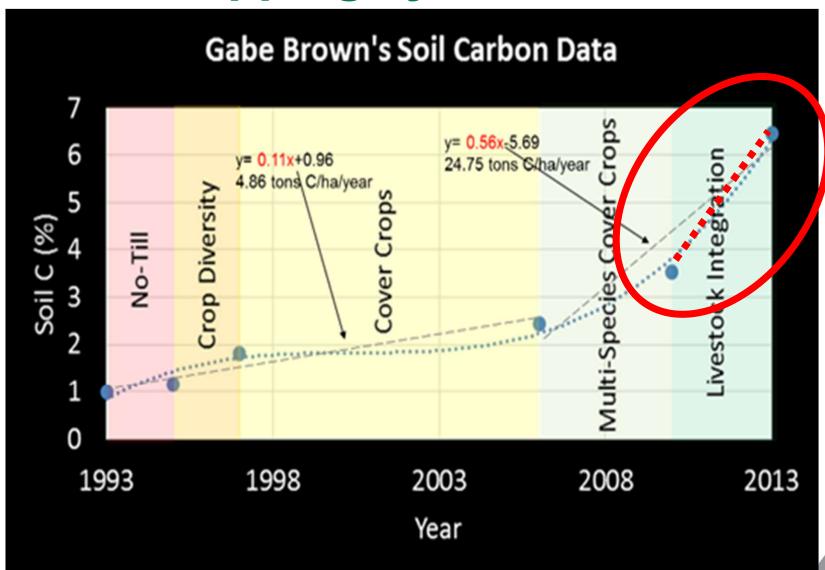
The MAGIC PUDDING



1 tonne of Soil Organic Carbon


3.67 tonnes of Carbon Dioxide For SALE

The 375 million year old carbon cycle

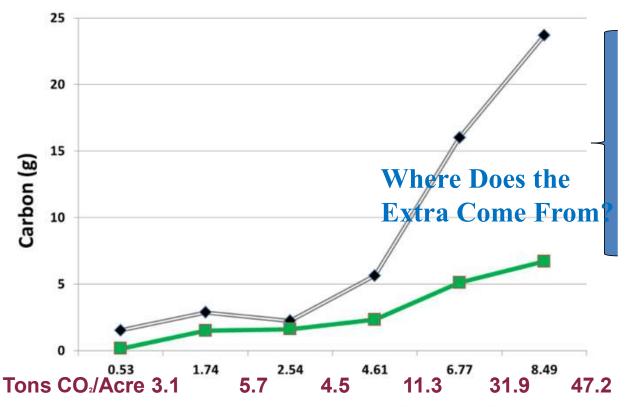


Cell grazing system, Uralla, NSW.

Annual cropping system - North Dakota.

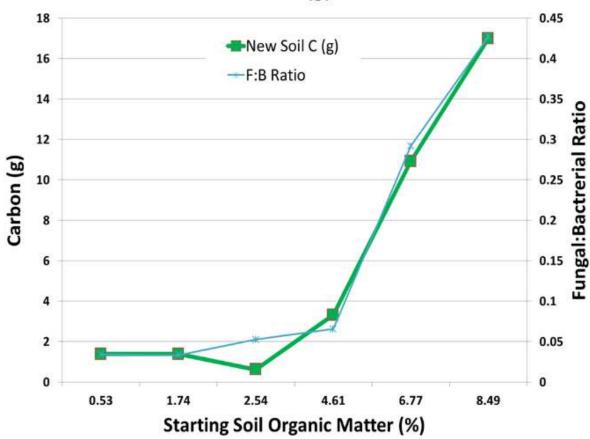
Had 460t SOC/ha to 1.5m by late 2020.

Source: Gabe Brown pers comm and Dr David Johnson, NMSU.



Sweet corn with dual purpose wheat or oats/cattle rotation at Dubbo. SOC has gone from 0.7% to 3.7% (top 10cm) in 2.5 years (Estimated 9.6t C added per ha/year). Livestock grazed at 27 to 37 DSE/ha for 6 months per annum.

NEW Soil Carbon Accelerates above 3% Organic Matter Carbon Partitions (Total New C & Plant+Root C)


Initial Soil Organic Matter Content (%)

Johnson, D, Ellington, D and Eaton, W (2013) Institute for Sustainable Ag Research.

NEW Soil Carbon is correlated (R2=0.99) to the F:B Ratio

New Soil Carbon (g) & F:B Ratio

Johnson, D, Ellington, D and Eaton, W (2013) Institute for Sustainable Ag Research.

WHAT does that mean?

- Photosynthetic CAPACITY measured at 11% in Industrial Agriculture.
- Photosynthetic CAPACITY measured at 56% in BEAM Crops.
- Nett PRIMARY PRODUCTION
 up 5 fold

Changes in Soil Macro and Micro- Nutrients with "BEAM"

Months	0	6	8	15	19	Percent Increase	R ²	Regression
Manganese (mg/kg)	3.25	1.86	1.65	14.31	40.14	1135%	$R^2 = 0.969$	2nd Order
Iron (mg/kg)	4.89	4.12	2.66	27.01	59.19	1110%	$R^2 = 0.9892$	2nd Order
NO ₃ -N (mg/kg)	1.5	1.55	2.00	2.35	3.1	107%	$R^2 = 0.9847$	Linear
SOM (%)	0.75	1.25	1.22	1.49	1.41	88%	$R^2 = 0.7854$	Linear
Magnesium (mg/kg)	1.09	0.075	0.81	1.67	1.99	83%	$R^2 = 0.7954$	2nd Order
Calcium (meq/L)	4.09	2.82	3.00	6.07	7.19	76%	$R^2 = 0.6367$	Linear
Kjeldahl N (mg/kg)	633	719	739.00	752	1041	64%	$R^2 = 0.8244$	2nd Order
Phosphorus (mg/kg)	6.9	12.2	10.00	15.3	11.3	64%	$R^2 = 0.4624$	Linear
Zinc (mg/kg)	0.5	0.63	0.48	0.93	0.81	62%	$R^2 = 0.6652$	Linear
Copper (mg/kg)	1.17	1.1	1.04	1.74	1.64	40%	$R^2 = 0.6591$	Linear
Potassium (mg/kg)	30	33	32.00	42	41	37%	$R^2 = 0.8712$	Linear

20 month Study, 5 Sampling Periods

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

How?

- 7. Increased Production
 - 6. Increased Photosyn & Brix
 - **5. Plant fed right diet (Minerals)**
 - 4. Increased SOC, HUMUS & CeC
- The Staircase to Success
- 3. Quorum Sensing
 - 2. Increased Population
 - 1. Biological Biodiversity