Agri-food R&D: Re-examining the Rewards and the Risks

Philip Pardey
GEMS Informatics Center
University of Minnesota

2022 Crawford Fund Annual Conference
Parliament House, Canberra
August 15-16, 2022
Benchmarking Global Agricultural Production

Where in the world does agriculture happen?
1961

$1.08 trillion (2014-16 PPP prices)

High Income, total 43.9%
 - Europe, 18.7%
 - USA, 14.4%
 - High income other, 9.4%
 - Australia, 1.4%
Asia & Pacific, total 23.9%
 - China, 9.0%
 - India, 8.0%
 - Asia & Pacific other, 7.0%
 - EE&FSU, 13.9%
LAC other, 5.7%
 - SSA, 5.7%
MENA, 3.9%

2020

$3.98 trillion (2014-16 PPP prices)

High Income, total 23.8%
 - USA, 9.5%
 - Europe, 7.9%
High income other, 5.4%
 - LAC other, 6.3%
Asia & Pacific, total 44.7%
 - China, 22.7%
 - India, 10.9%
 - SSA, 7.5%
Asia & Pacific other, 11.1%
 - EE&FSU, 6.3%
 - MENA, 5.2%

Source: Data from FAO (2022).
Benchmarking R&D Investments (Preliminary estimates)
Global R&D Spending – Agri-Food vs Total R&D

Agricultural R&D/Total R&D Intensity (Global)

Agricultural R&D/Total R&D Intensity (By Income Class)

Low income

Upper middle income

Lower middle income

High income

percent

percent

7.4

4.4

20.2

3.3
Global Agri-Food R&D Spending, 1980 vs 2018

1980
- High income Europe: 25%
- High income other: 21%
- E. Europe & FSU: 14%
- LAC: 11%
- SSA: 4%
- MENA: 2%
- Asia & Pacific: 7%
- Australia: 3%

$41 billion (2020 PPP$)

2018
- High income Europe: 19%
- High income other: 17%
- LAC: 4%
- MENA: 7%
- SSA: 4%
- Asia & Pacific: 13%
- E. Europe & FSU: 1%

$101 billion (2020 PPP$)
Global (Agri-Food) R&D Spending – Public vs Private

2018

- Total R&D
 - Public: 32%
 - Private: 68%

- Ag R&D
 - Public: 49%
 - Private: 51%

$2,302 billion (2020 PPP)

$101 billion (2020 PPP)

Agri-Food R&D

- Public
- Private

Percent

<table>
<thead>
<tr>
<th>Year</th>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High income: 56%
Low income: 11%

2018
Agri-Food R&D – A (still) Growing Global Divide

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Amount (million 2020 PPP$)</th>
<th>Share (%)</th>
<th>Country</th>
<th>Amount (million 2020 PPP$)</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United States</td>
<td>7,139</td>
<td>18</td>
<td>China, PR</td>
<td>22,723</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>USSR</td>
<td>5,012</td>
<td>12</td>
<td>United States</td>
<td>14,362</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Japan</td>
<td>4,039</td>
<td>10</td>
<td>Japan</td>
<td>7,963</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Brazil</td>
<td>2,300</td>
<td>6</td>
<td>India</td>
<td>6,196</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Germany</td>
<td>1,971</td>
<td>5</td>
<td>Brazil</td>
<td>4,333</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>United Kingdom</td>
<td>1,502</td>
<td>4</td>
<td>Germany</td>
<td>3,915</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Australia</td>
<td>1,299</td>
<td>3</td>
<td>Korea, Rep.</td>
<td>3,133</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>France</td>
<td>1,089</td>
<td>3</td>
<td>France</td>
<td>2,348</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Netherlands</td>
<td>989</td>
<td>2</td>
<td>Netherlands</td>
<td>2,117</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Canada</td>
<td>934</td>
<td>2</td>
<td>Australia</td>
<td>1,986</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Top 3</td>
<td>16,190</td>
<td>40</td>
<td>Top 3</td>
<td>45,048</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Top 10</td>
<td>26,275</td>
<td>65</td>
<td>Top 10</td>
<td>69,076</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Bottom 50</td>
<td>256</td>
<td>0.6</td>
<td>Bottom 50</td>
<td>447</td>
<td>0.4</td>
</tr>
</tbody>
</table>
International Agri-Food R&D

CGIAR trend

- High income
- Low and middle income
- International Banks and others
- Foundations
- Low income

Donor 2020

<table>
<thead>
<tr>
<th>Donor</th>
<th>%</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>14.8</td>
<td>104.9</td>
</tr>
<tr>
<td>Bill & Melinda Gates Fdn</td>
<td>14.0</td>
<td>99.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7.3</td>
<td>51.9</td>
</tr>
<tr>
<td>Germany</td>
<td>5.1</td>
<td>36.3</td>
</tr>
<tr>
<td>World Bank</td>
<td>4.7</td>
<td>33.6</td>
</tr>
<tr>
<td>Top 5</td>
<td>46.0</td>
<td>341.9</td>
</tr>
<tr>
<td>Top 10</td>
<td>63.0</td>
<td>446.6</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>708.6</td>
</tr>
</tbody>
</table>

39% decline, 2014–20
Agri-Food R&D Investment Recap

Unprecedented structural shifts in the geography, research orientation and research performance of agri-food R&D worldwide
R&D Rewards

Does agriculture research pay?
- Have the easy gains been made?
- Has the ROI declined over time?

How do the R&D investment trends square with the economic evidence?
What We Did

• A hard-nosed, data-driven assessment of the past payoffs to CGIAR research investments

• To do so we

 • Compiled all available ROI evidence for National (and CGIAR-related) R&D
 • 430 (115) published studies, 2,600 (363) ROI estimates, spanning 1958-2015
 • Standardized ROIs into comparable benefit-cost ratio (BCR) estimates
 • Conducted a formal meta review of the ROIs
 • Benchmarked that ROI evidence against other relevant information
 • Identified 9 studies of CG-related R&D with payoffs in excess of one billion
What We Found

A wide dispersion in the *reported* BCRs

Our formal meta-regression analysis reveals *conditional predictions* of the returns to R&D after holding constant attributes of the studies that confound direct comparisons

- **CG predicted BCR = 12.0**

 (95% CI 9.0 to 15.8)

- **Non-CG predicted BCR = 9.9**

 (95% CI is 8.6 to 11.2)

A $600 billion return to the cumulative investments in the CG! (2010 prices)
Aspects of Our Findings

Agricultural research lags are long (often multiple years, decades)
- Realizing the full potential from agricultural R&D requires far-sighted, steady and sustained investments

Very high BCR indicates significant underinvestment
- A BCR of 10:1 indicates that agricultural R&D was more profitable than many other government investments

The main beneficiaries are the producers and consumers of staple crops targeted by CGIAR and NARS
- This means the lion’s share of the total benefits from CGIAR crop-improvement research has gone to the poor

The totality of the evidence in our report, and elsewhere, supports at least doubling the total public investment in agricultural R&D.
How Do R&D Payoffs Happen?

New Insights from New Research

- The value proposition of genetic gain (a century of US wheat improvement)

- Moving Matters (agriculture on the move!)
Genetic Gain in U.S. Wheat, 1918-2019

Consequences of Scientific Selection

Increased
- Spatio-temporal varietal diversity
- Yields
- Output
- Crop resilience

Reduced
- Cropped area
Multi-Peril Pest Risk – Biotic Risk Zones

Wheat, 13 pests

Maize, 11 pests
Production by Municipality, 2015

Production by County, 2007

~ + 2.36 C°

~ - 1.05 C°

432 Km W
422 Km N

279 Km W
157 Km N

Multi-pest risk severity
Risks

Risks of R&D underinvestment

- Climate change risks
- Plant and animal (and human) pest and disease risks
- Food security risks
- Biodiversity risks
- Regulatory risks
R&D Underinvestment Risk – The 21st Century Reality

Slowdown (possible declines) in growth of agricultural productivity
 • Failure to meet growth in demand at affordable prices (food accessibility)
 • Undercutting international competitiveness

Unmanaged risks: Changing climate and pest and disease pressure

Unresponsive to changing markets
 • Geographic location, rural-urban relocation
 • Regulatory restrictions
 • License to operate

Requires running even harder to stand still, let along achieve the global growth in food supply to meet the projected growth in demand
 • And to do that sustainably
 • Lower the footprint of agriculture on the environment
Take Home Messages

The payoffs to agri-food R&D are large, and show no signs of diminishing over time.

Arguable, the multitude of risks facing the world’s agri-food sector are much larger, and on the rise, relative to when the CGIAR and its antecedents were formed.

Instead of doubling down on investments in agri-food R&D, many trends are heading in the wrong direction.

Agri-food R&D is still Slow Magic, calling for an urgent revitalization of investments in agri-food R&D.