

➤ Incitec Pivot Fertilisers

- > Fertiliser solutions for the future
 - Nitrogen Inhibitors reducing emissions, maintain yield
 - Bio Ferts recycling nutrients from waste streams
 - Green solutions of the future

Incitec Pivot Fertilisers

IPF is Australia's largest distributor of fertilisers

3
Manufacturing
facilities²

Primary Distribution Centres

Regional Service Centres

Soil testing laboratory

△ 3rd party manufacturing site

Regional offices

Headquarters

Manufacturing site

17
Primary distribution centres (PDC)

2
Soil and plant testing
Lab

9 Export regions

>800kt Fertiliser Storage >1mt Produced >2mt Distributed

Enhanced Efficiency Fertilisers Nitrogen Inhibitors

Minimise nutrient losses and GHG emissions - maximise yield

- ✓ Nitrification Inhibitor
- Reduces N₂O emissions –by up to 90%
- ✓ Slows conversion of ammonium to nitrate
- ✓ Increased Yield
- ✓ Reduced fertiliser rate for same yield

- ✓ Urease Inhibitor
- ✓ Reduces NH₃ emissions
- ✓ Slows conversion of urease to ammonium
- Increased Yield
- ✓ Reduced fertiliser rate for same yield

F

Nitrogen Cycle & loss pathways

- Accounts for 5-7 % of GHG emissions in Australia
- 80 % of IT from agricultural practices.

Crop

50% N

Nitrogen Cycle

Soil Research, 2018, 56, 752-763 https://doi.org/10.1071/SR18114

Mitigation of nitrous oxide emissions from furrow-irrigated Vertosols by 3,4-dimethyl pyrazole tetra-methylene sulfone, an alternative nitrification inhibitor to nitrapyrin for direct injection with anhydrous ammonia

Graeme Schwenke A,B and Annabelle McPherson A

Table 1. Measured plant properties from pre-desiccation sampling at the two experimental sites T1, AA; T2, AA+DMPS; T3, AA+nitrapyrin; significant N treatment differences (P < 0.05) are indicated by different letters following treatment means

Measure	Emerald			Gunnedah		
	T1	T2	T3	T1	T2	T3
Population (plants/ha)	52 200a	77800b	63300a	132 500	135 200	131 100
Boll number (bolls/plant)	26b	17a 🛕	20a	9	9	9
Dry matter* (kg/ha)	8847	9127	8690	7170	6950	7162
Lint yield (kg/ha)	3401	3631	3072	2470	2472	2180
Seed yield (kg/ha)	2757	2815	2372	2328	2330	2077
Dry matter* N (kg N/ha)	136	144	146	124	122	128
Lint N (kg N/ha)	9.2a	11.7b	9.0a	4.7	5.2	4.7
Seed N (kg N/ha)	122	123	105	104	102	94

^{*}All aboveground plant material excluding lint and seed.

T1 = Anhydrous ammonia (AA), T2 = AA + eNpower &

T3 =AA + Nitrapyrin (alternative technology)

Fig. 3. Cumulative N₂O flux measured with manual chambers at (a) Emerald, and (c) Gunnedah, and semi-auto chambers at (b) Emerald and (d) Gunnedah. Data are back-transformed means from each chamber position within each N treatment. Significant treatment differences are described in the text. T1, AA; T2, AA+DMPS; T3, AA+nitrapyrin; IF, irrigated furrow; NF, non-irrigated furrow; IH, irrigated side of the plant bed; NH, non-irrigated side of the plant bed.

86% at Gunnedah and 77% at Emerald Reduction emissions are superior performance to alternative (Nitrapyrin) inhibitor

^ANSW Department of Primary Industries, 4 Marsden Park Road, Calala, NSW 2340, Australia.

^BCorresponding author. Email: graeme.schwenke@dpi.nsw.gov.au

Bio fert

Recycling nutrients from waste streams into fertilisers

Australia Bio Fert is made from heat-treated, sterilised organic material mixed with balanced mineral nutrients and functional carbon. The mixture is granulated into high quality and easy to apply granules.

A2	Organic horticulture and pasture		
	C19 N2 P4 K9 S4		
B5	Horticulture and Dairy		
	C14 N29 P9 K10 S1		
B7	Horticulture		
	C14 N10 P4 K10 S5		
C1	All		
	C32 N4 P2 K2 S1		
D1	All		
	C13 N29 P1 K1 S1		
D5	All		
	C13 N20 P1 K1 S1 NI		
E1	Grains		
	C11 N8 P14 K1 S6 Zn 0.6		

The trials continue to validate the farmer value

ABF B7 2.61kg

Control 1.74kg

Control 1.37kg ABF B7 1.59kg

Incitec Pivot Limited INNOVATION ON THE GROUND

Latrobe Uni commercial celery trial 1.60 1.40 1.20 Av celery weight (08.0 09.0 09.0 09.0 0.20 0.00 Control Manure+NPK ARE R5 Full ARE B5 Full

	organic i	VialialCilli	ADI DOTAII	ADI DOTAII
N	PK Fert	Fert	Rate 3 apps	Rate 5 apps
		Treatment		

Study by La Trobe University 2022

Combining inhibitors with Bio fert technology

N₂O Emissions over 6 months, growing Celery at Baxter Victoria

CO₂ Emissions over 6 months, growing Celery at Baxter Victoria

Table 3. Effect of Base (Pre-plant/planting) fertilizer application on celery yield and biomass at harvest

Base Fertilizer	Yield (g/bunch)	Biomass (FW) (g/plant)	Biomass (DW) (g/plant)
Nil	968 a	1341 a	75.7 a
B5 (45 kg N/ha)	1051 ab	1759 b	87.2 b
B7 (50 kg/N ha)	1166 bc	1922 b	98.3 c
Manure+PB	1238 c	1886 b	97.7 c
LSD (P=0.05)	150.6	216.4	10.29

Table 4. Effect of side-dress fertilizers on celery yield and biomass at harvest.

Yield	Biomass (FW)	Biomass (DW)	
(g/bunch)	(g/plant)	(g/plant)	
694 a	992 a	67.5 a	
1308 b	2036 b	96.3 b	
1315 b	2153 b	105.4 c	
1350	2343	93.7	
130.4	187.4	8.92	
	(g/bunch) 694 a 1308 b 1315 b 1350	(g/bunch) (g/plant) 694 a 992 a 1308 b 2036 b 1315 b 2153 b 1350 2343	(g/bunch) (g/plant) (g/plant) 694 a 992 a 67.5 a 1308 b 2036 b 96.3 b 1315 b 2153 b 105.4 c 1350 2343 93.7

^{*}Not in factorial analysis, included for comparison purposes only

Reduced GHG emissions, both nitrous oxide and carbon dioxide when Bio ferts and inhibitors are combined

Similar yield compared to standard farming practice

Several key projects identified to deliver future sustainable fertilisers

